
S I

NASA Contractor Repaat 178277

ICASE REPORT NO. 87-23

ICASE
EXPLOITING LOOP LEVEL PARALLELISM IN NONPROCEDURAL
DATAFLOW PROGRAMS

(BASA-CR-178277) E X P L C I T I B G LCGE LEVEL N87-2 1513
PARALLELISH IN NCLFROCEDURAI LA'IAPLGB I
P E O G R A H S F i n a l Beport (N A S A) 19 p CSCL 09B

Unclas
G3/52 43400

Maya B. Gokhale

Contract No. NAS1-18107
April 1987

INSTITUTE FOR COPIPUTBR APPLICATIONS IN SCIENCE MID EMGINEEBINC
NASA Langley Research Center, -ton, Virginia 23665

Operated by the Universities Space Research Amsociation

EWLOITING LOOP LEVEL PARALLELIS! IN "PROCEDURAL

DATAPLOW PROGRAMS

Maya B. Gokhale
Department of Computer and Information Sciences

University of Delaware

ABSTRACT

In this paper, we discuss how loop level parallelism is detected in a

nonprocedural dataflow program and how a procedural program with concurrent

loops is scheduled. In addition, we discuss a program restructuring technique

which may be applied to recursive equations so that concurrent loops may be

generated for a seemingly iterative computation. A compiler which generates

C code for the language described below has been implemented. We describe

the scheduling component of the compiler and the restructuring transformation.

This research was supported in part by the National Aeronautics and Space
Administration under NASA Contract No. NAS1-18107 while the author was in
residence at the Institute €or Computer Applications in Science and
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665 and in
part by UDRF Grant LTR860114.

Exploiting Loop Level Parallelism in Nonprocedural Dataflow
Programs

MayaB. Gokhale
Department of Computer and Information Sciences

University of Delaware

1 Introduction

Loop level parallelism has been recognized tu having major impact in the performance of parallel
programs on MIMD machines. Most parallel languages contain some sort of forall construct (for
example, see [7] or [12]) and much effort has been directed towards detecting forall loops in sequen-
tial programs (for a small sampling of the literature in this area, see [l], [3], [4], [8], [SI, [13], [16])
and automatically generating parallel versions of the sequential programs.

In this work, we also address the question of automatically generating forall loops, but from a
different perspective. Our starting point is a very high level dataflow language PS (similar to [2],
[17], [19], and [18]), attractive because of ita functional semantics which greatly facilitate program
restructuring.

To demonstrate this, we show how we can transform certain forms of subscript expressions used
to index recursively-defined arrays so that concurrent loops may be generated instead of sequential
ones. Although these transformations are also applicable to sequential programs, a more careful
analysis of reassignment and aliasing may be required in the sequential program. In some cases,
the programmer’s use of aliasing and reassignment may prevent the transformations from being
applied.

In addition to the benefits of its functional semantics, the language PS ia attractive for the close
correspondance in form between equations used to describe numerical algorithms and equations
in PS. In fact, we may consider the language to be an internal (albeit textual) representation of

.

2

equations such as Equation 1 below. Our ultimate goal is a translator of equations in the form of
(l), perhaps as 'QXor Postscript files, to modules in this language.

To date we are implementing a compiler for PS, currently 24,000 lines of Pascal, which generates
declarations and functions in the C language. The compiler automatically collects equations into
groups for which are generated C for loops. Each loop is annotated to indicate whether it is an
iterative or concurrent for. The subscript transformation described in Section 4 has been developed
independently, and is being integerated into the compiler.

In this paper, we describe the scheduling phase of the compiler, with particular emphasis on

0 differentiating between parallel and sequential loops,

0 memory reuse in the generated imperative code, and

0 array transformation to facilitate parallel loop generation and memory reuse.

2 The PS Language

The Problem Specification (PS) language [6] is a very high level da tdow language. A program in
this language consists of one or more module descriptions, where a module is simply a functional
unit, taking 0 or more input parameters and returning 1 or more result. Internal to a module
the data declarations resemble Pascal or Modula-2. There may be user-defined types or variables
declared. Standard Pascal data types are provided (primitive types, enumerations, arrays, records).
In place of the procedural code, however, PS has a define section consisting of equations defining
values for all non-input variables. The equations may be entered in any order. An equation in PS
is a restricted form of mathematical equation in that the left hand side of the is either a single
variable or a list of variables, and the right hand side is an expression of the same arity and type
as the the left hand side. A scheduling phase of the compiler derives from the data dependency
graph of the equations an ordering for the procedural code which is emitted.

Example: Let us take a a simplified version of standard relaxation, where for non-boundary
elements and for k > 1,

Note that in this example, all element values are taken from the previous iteration. In PS the
superscripts (iteration number) and subscripts (array element) are not dfierentiated. All of them
are put in as subscripts:

3

.

To make a PS module out of this fragment, we first write the module header:

Relaxation: module (Inlt lalA: array[I,J] of real :
M: l n t : m a x X : lnt):
InewA: array [I . 31 of real] :

InltlalA is the input array of dimension M x M, maxK is the number of iterations desired, and
newA is the array returned as the module result.

Next, we define types and local variables:

type
1.J = 0 .. M+l: K = 1 .. m d :

var
A: array [IC] of array[I.Jl of real :

We have defined subrange types I and J as ranging from 0 to M + 1, so that the boundary may be
padded with 0’s. K is the superscript from the initial formula Since A has dimensionality which is
the sum of subscripts and superscripts,

Now we insert the equations. The initial value of A is simply the input array InltialA. The
result NewA is the value of the maxK’th element of A.

it is declared as a local %dimensional array.

A111 = Init ialA; (* the f i r s t grid is Input *)
newA = AtmaxKI: (* the gr id returned I s

from the l a s t i t e ra t ion *)

Next we give the equation defining the other elements of A, including the boundary values. This
equation uses an if expression to determine whether an element is a boundary value or an interior
value.

A[K,I,J] = If (I = 0)
or (J = 0)
o r (I = M + l)
or (J = M+1)
then A [K - l , I . J]
e l se (A[f-l,I,J-l]

(* carry over boundary polnt8 *)

‘In keeping with other ringle umignment languagee, a value ir never changed. Rather a new &e ir generated
from a computation involving the old value.

4

+A [K - l , I - l , J]
+ A [K - l , I , J + l]
+A[K-l,I+l,J]) / 4;

The entire module is shown in Figure 1.

3 Scheduling the Equations of a Module
The PS compiler consists of three components,

0 the "front end" which does syntax and semantic analysis and stores the entire program in an
internal form

0 the scheduler, which, on a module by module basis, builds a data dependency graph, analyzes
the graph and generates a flowchart of execution ordering including, if necessary, iterative
and parallel loops

0 the code generator which generates procedural code from the flowchart.

In this paper we concentrate on the scheduler, beginning with a description of the dependency
graph.

3.1 The Dependency Graph

The dependency graph G = (N, E), where the set of nodes N contains the data items and equations
of the module, and E contains directed edges between nodes. A directed edge is drawn from node
i to node j if data produced in i is used in j. Thus the graph is simply a dataflow graph, showing
the flow of data from producer to consumer. There exist data dependency edges from all variables
on the right hand side of an equation to the equation, and from the equation to the variable on the
left hand side. In addition, data dependency edges are drawn from variables defining a subrange
bound to variables using that subrange. For example, a data dependency edge is drawn from M to
Ini t ia lA, to A, and to NeuA, since the bounds of these arrays depend on M. A data dependency
edge is drawn from maxK to A for the same reason. Besides the data dependency edges, certain
hierarchical edges also are drawn. These are used to show the relationship between the fields of a
record and the record itself, and do not concern us further in this example.

Each node and each edge is annotated with a list of labels. There is a node label for each
dimension of the node, eg. an array A[K,I,J] has three node labels, describing respectively, the
dimensions K, I and J. The edge labels contain information about the subscript expression used to
reference the source node. Figure 2 show in further detail the attributes of the edge labels.
The dependency graph for the Relaxation Module is shown in Figure 3.

5

(*$m+v+x+t -*)
Relaxation: module (Ini t ia lA: arrayC1,JJ of r ea l ;

M: in;; m a : i n t) :
InewA:array [I, J] of real] ;

tYPe
1.J = 0 .. M + I ; X = 2 .. m d ;

var A: array [I . . maxXl of arrayC1,JI of r e a l ;
(* A denotes the succession of grids *)

define
(*eq.l*) At11 = Ini t ia lA; (* the first gr id is Input *)
(*eq.2*) newA = A[maxKl; (* the g r id returned i n from

the l a s t i t e ra t ion *)
(*eq.3*) A@,I,J] = i f (I = 0)

or (J = 0)
or (I - M+I)
or (J = M+II
then AIX-l,I,Jl
e l s e (AIK-l,IDJ-ll

+A [IC-1,I-1, J]
+A [K - I ,I , J+lI
+A[X-l.I+I,JI) / 4;

(* carry over boundary point. *)

end Relaxation;

Figure 1: The Relaxation Module

6

0 Position in Target of this Source Subscript

0 Subscript Expression Type

- "I" BPI in A[I]
- =I - constant" aa in A[I-2]
- any other expression

0 Offset amount. Applicable only to "I - constant" subscript expression

Figure 2 Edge Label Attributes

Fqure 3: Dependency Graph for lklaxation Module

7

rn Descriptor type: either Dependency Graph Node or Subrange Type

rn If Subrange Type,

- Is an iterative loop to be generated from this subrange or is a parallel loopto be gener-

- List of descriptors which are nested within this subrange
ated?

Figure 4: A Flowchart Descriptor

3.2 Scheduler Output

If the scheduler can determine an execution ordering for the equations, it generates a flowchart
describing both the order of equations and the loop nesting structure in which the equations are
embedded. The flowchart, then, is used by the code generator to emit the procedural code. The
flowchart is simply a list of descriptors. A descriptor may indicate either a dependency graph node
or a subrange type. The code generator, on encountering the former, emits code for the data item
or the equation. The presence of the latter means that a for loop over the indicated subrange is
to be generated. A subrange type descriptor also contains a list of descriptors which are contained
within the scope of the loop. Thus the flowchart is a recursive structure which reflects the nesting
structure of the generated program. The format of a descriptor is shown in Figure 4.

3.3 The Scheduling Algorithm

The scheduling algorithm described here is a variant of the algorithm of [15]. Our algorithm is
most similar to [5], which generates a schedule for subsequent code generation to a procedural
data flow language. The algorithm described below does distinguish between iterative and parallel
loops, but performs poorly in other respects, such aa combining into a single loop those equations
which though not recursively related, nevertheless depend on the same subscript(s). See [ll] for a
scheduling algorithm which produces only iterative loops, but does combine non-recursively related
equations which depend on the same subscript(s), and [5] for the algorithm which distinguishes
between iterative and parallel loops, but does not combine iterative components which depend on
the same subscript(s) .

The scheduler consists of two mutually recursive procedures. The first, Schedule-Graph, takes
aa input a dependency graph, and returns a flowchart. The second, Schedule-Component, sched-
ules a Maximally Strongly Connected Component (MSCC) of a dependency graph, and returns a
flowchart.

Schedule-Graph operatea LLS follows:

8

1. Find the MSCC's of the graph {Mi}, i = 1.. . n, where n is the number of MSCC's.

2. Initialize the flowchart to null.

3. For each Mi,

(a) Call Schedule-Component with M . as input
(b) Concatenate the result returned by Schedule-Component onto the flowchart.

4. Return the flowchart.

Schedule-Component, in turn, does the following:

1. If the component consists of exactly one data node, exit with a null schedule.

2. Pick an unscheduled node dimension to use as loop subscript.

(a) If there are no more dimensions left to be scheduled and the graph contains more than 1
node, then signal error and return: the equations cannot be scheduled by this algorithm.

(b) If there are no more dimensions left to be scheduled and the graph contains exactly 1
node then return as flowchart that single node.

3. Otherwise verify that the subrange associated with that dimension appears in a consistent
position in each node of the component, ' and that the only subscript expressions used in
that dimension are either "I" or 'I - constant".

4. Delete edges in Mi which contain subscript expressions of type 'I - constant" in the dimension
being sched~led.~

5. Mark the dimension as scheduled.

6. Create a flowchart descriptor for a Subrange Type. If 'I - constant" edges were deleted,
record that an iterative loop is to be generated, otherwise parallel.

7. Call Schedule-Graph with the subgraph which results from deleting the 'I - constant" edges.

8. Concatenate the result returned by Schedule-Graph onto the Subrauge Type flowchart de-

Let us apply the scheduling algorithm to the relaxation dependency graph (Figure 3). The
component graph and the flowchart for each component are shown in Figure 5. Input to Schedule-

'Forexample,inthesquationA[X.J] - A[I.J- i] + AfJ,:] thembrcriptr rand J~notinaeoMbtentporition.
'We can delete them reemire edgw and rtill generate a correct rehedule becaw if the loop iterates from the low

bound of the rubrange to the high bound, a reference to (for axample) A[I-2] will refer to an element of A which ~ b l

produced two iteration, back.

scriptor created above, and return the resulting list.

c

9

Component
1

Node(s) Flowchart
InitialA null

2 I m null

II 7 I newA I null II

J.

4 eq. 1 DOALL I (DOALL J (eq.1))

6 eq.2 DOALL I (DOALL J (eq.2))
5 A, eq.3 DO K (DOALL I (DOALL J (eq.3))) ’

c L

Figure 5: Component Graph and Corresponding Flowchart

Graph is the entire graph. The MSCC’s of the graph are shown in Figure 5. Schedule-Graph
calls Schedule-Component successively with component. The third column of Figure 5 shows the
flowchart returned by Schedule-Component for each of the components. Components 1,2, 3, and
7 result in a null flowchart being returned by Schedule-Component at step 1 of the algorithm.

For Component 4, Schedule-Component chooses the first dimension to schedule (I) and recur-
sively calls Schedule-Graph with that component aa input. Schedule-Graph in turn recursively
calls Schedule-Component with the same component, the first dimension of which is marked sched-
uled. Schedule-Component now marks the second dimension (J) scheduled, and calla Schedule-
Graph with the same component as input. Schedule-Graph calls Schedule-Component. Now, by
step 2b of Schedule-Component, eq.1 is returned aa result to Schedule-Graph, which returns it to
Schedule.-Component, which concatenates it onto a “DOALL J” and returns “DOALL J eq.1” to
Schedule-Graph, which returns it to Schedule-Component, which concatenates it onto “DOALL I”
and returns “DOALL I DOALL J eq.2” to the original call of Schedule-Graph.

Component 6 is processed in exactly the same way aa Component 4. Component 7, however,
is a multi-node MSCC. Schedule-Component picks the first dimension (K) to schedule first. The
other two cannot be chosen because of subscript expressions “J + 1” and “I + 1” (see Schedule-
Component step 3). All edges having subscript expression “K - lm are deleted by step 4, and
Schedule-Graph is called recursively. The subgraph now has tw:, components, eq.3 and A. Eq.3
can be scheduled in the I and J dimensions 89 outlined above for eq.1. The flowchart for A is null.
Thus the flowchart for Component 5 consists of an inner two level DOALL and an outer DO. The
final schedule returned by the outermost call to Schedule-Graph is shown in Figure 6.

3.4 Virtual Dimension

The code generation phase generates C declarations and tmignment statements. For each variable,
either input parameter, output parameter, or local variable, an equivalent C declaration is gener-

10

DOALL I (
D O A U J (

aq.1
1

1
DO IC (

DOALL I (
DOALL J (

1
aq.3

1
1
DOALL I (

D O A U J (
aq.2

1
1

Figure 6: Flowchart for the Ralaxation Module

11

ated. Then, using the flowchart, the code generator emits for loops and assignment statements.
Thus array declarations are generated for each of the arrays InitialA, NewA, and A. Now it is

obvious that allocating a three dimensional array for A is unnecessary,' since in C and other imper-
ative languages the same function can be performed by a two dimensional array with reassignment.
The k'th dimension of A can be thought a Uvirtual" dimension rather than one physically allocated
in its entirety.

In general, a data node dimension is defined to be physical if the number of elements allocated at
that dknension of the generated variable is the same as the number declared in the PS declaration.
A data node dimension is virtual if the dimension is mapped to a "window" of elements, and the
width of the window is smaller that the PS declared size. For the array A, a window of two elements
is needed, the current one K, and the previous, K-1.

The scheduler recognizes virtual data node dimensions during the Schedule-Component phase.
For each data node which is a local variable Nr in the component M , the node dimension being
scheduled is marked virtual if each edge from Nr to a node of type equation is in one or both of
the following forms:

1. The edge has subscript expression 'I" or '1 - constant" in the dknension being scheduled,
and the target is in Mi

2. The edge goes to a node outside the component, and the edge has a subscript expression of
the form 'N", where 'N" has been used as the upper bound of the subrange defining that
dimension. This type of edge indicates that only the last element at that dimension is used
outside the loop.

In the cme of our example, local variable A is virtual in dimension 1. The other two dimensions
are not virtual for two reasons: first, they have edges with subscript expression 'I + constant",
and second, there am edges going out out of the component which don't have the second form
of subscript expression in those dimensions. Therefore the scheduler marks the first dimension of
data node A virtual with window two, thereby directing the code generator to allocate only two
instances rather than maxK instances.

4 A Restructuring Transformation

We now look at a slightly modied version of Equation 1. We will show that what appears to
be a strictly iterative formulation can, with a shift of coordinate system, still result in a paralie1
loop, and that the 'Steration" superscript need not really be an iteration subscript in the generated
Prop-

the =ope of tbja paper.
'It t .Lo obviour that generating a declaration for NewA L unnaeeoaary. Onr roiution to this problem u beyond

12

Let us now solve the more standard (but still simplified) relaxation, for IC > 1,

This results in equation 3 of the module becoming:

A[K.I.J] = if (I = 0) (* carry over boundary points *)
or (J = 0)
or (I = M+1)
or (J = M+1)
then ACK-1 .I .Jl
else (ACK.1.J-11

+A [K. 1-1 . J]
+A [K- 1 . I . J+l]
+ACK-l.I+l.Jl 1 / 4;

Now when we apply the scheduling algorithm, we find that deleting the K-1 edges leaves two
recursive edges, so that both the I and the J loop must be iterative.

The resulting schedule is shown in Figure 7.
The virtual dimension analysis gives the same result aa in the previous version: the first di-

mension of A is virtual with window of two elements. Note that each dimension is scheduled
independently, so that we do not detect the fact that only one array is needed.

At this point,we take a closer look at the data dependencies of A. The datdow graph for A
in which each array element is a node (rather than the form used above in which there is a single
node for the entire array) shows that all elements whose indices satisfy the equation

2 K + I + J = t , t = 1 . . . 2 x mazK + 2 x M

can be computed at one time.
In this section we demonstrate a technique by which such parallelism can be detected. In

particular, we will show how to find linear solutions to a set of inequatities representing the recursive
array dependencies. See [lo] for a more complete treatment of the subject for constant offset
recursive equations, and [14] for an extension to the method which handles certain forms of symbolic
offsets in recursive equations.

Our fundamental constraint is that data must be produced before it can be used. Thus A[K, I, J]
cannot be created until after A(K - 1, I,J],A[K,I, J - 11, A[K, I - 1, J] , A[K - 1,I, J + 11, and
A[K, I + 1, J] are available.

We define the time of creation for each array element aa a linear combination of the indices.
For the recursively defined array A, this gives us the time equation

t (A[K , I , J]) = a K + bI + cJ.

13

InltlalA
DOALL I (

DOALL J (
eq.1

1
1

DO I (

eq.3

DO K (

DO J (

1
1

1
DOALL I (

DOALL J (
eq.2

1
1

Figure 7: Flowchart with Revised Eq.3

14

Our first problem is to solve for the coefficients u, b, and c.
We now represent the problem's dependence ordering with (strict) inequalities involving time.

In this case, the time for A[K, I , J] must come after the time for A[K - 1, I , J] , etc. which gives
ua five dependence inequalities:

a K + b I + c J > a (K - 1) t b I + c J =+ a > O

a K + bI+cJ > aK + bI+c(J - 1) =+ c > 0
a K + b I + c J > a K + b (I - 1) + c J =+ b > O

aK + bI + cJ > a(K - 1) + bI + c(J + 1) =+ a > c

a K + b I + c J > a (K - l) + b (l + l) + c J =+ u > b

Now we can find the least integers a b, and c for which these dependence inequalities will hold.
In this case, we get a = 2 and b = c = 1, and arrive at the time equation 2K + I + J cited above.

All array elements A[K, I , J] such that 2K + I + J = t will be defined at time t. For given t ,
these entries comprise a "hyperplane". As t is increased from 0 to tMa= = KMa, + I'M,,= + JMa=,
we find a sequence of such hyperplanes which cover every point in the array.

We now define a new array A' related to A so that A'[K',I',J'] = A[K, I , J] and have
A'[K',I', J '] be constructed at time K'. Thus, we transform the coordinates K, I , J for the ar-
ray A into coordinates K', l", J' such that K' = t = 2K + I+ J . A method for obtaining the I' and
J' dimensions after K' has been determined is given in [lo]. In this example, we find that l" = K
and J' = I. Specifically,

K' = 2K + I + J F = K
K = 1 ' I = J'

J' = I
J = K' - 21' - J'
A'[2K + I + J, K , I] ,
A [f , J' , K' - 21' - J']

A[K, I , J] = A'[K', 1', J'] =
A'[K', 1', J'] = A [K , I , J] =

Using these equalities, we derive the following recursive equation wing A'.

A'[K',P, J'] = A [f , J ' , K' - 21' - J']
= A[1 ' -1 , J t ,K ' -2 , I - J']

if J' = OV K' - 21' - J' = OV J' = M + 1 V K' - 2I' - J' = M + 1
= A'[K'- 2 , f - 1, J']

if J' = OV K' - 21' - J '= OV J' = M + 1 V K' - 21' - J' = M+ 1

15

. = (A[I' , J',K' - 21' - J' - 11 + A[I', J' - 1,K' - 21' - J']
+A[I' - 1, J', K' - 21' - J' + 11 + A(1' - 1,J' + 1,K' - 21' - 5'])/4
otherwise

= A'[K' - 1, I', J'] + A'[K' - 1, I', J' - 11
+A'[K' - 1, I' - 1, J'] + A'[K' - 1, I' - 1, J' + 11
otherwise by simplification

Applying the..scheduliig algorithm to the subgraph of this recursive equation gives us an outer
iteration, as before. However, once the 'K' - constant" edges have been deleted, the I and J
dimension can be scheduled as parallel loops (as in the example based on Equation 1) rather than
iterative. In fact, the schedule is identical to that of Figure 6.

In addition, by using the transformed array A' instead of the original array A in the scheduling
algorithm, we now find that the first dimension of A' is virtual, since the only references are to K'- 1
or K'-2. The window size is three, so that we can allocate an array 3 x fMas x JLas = 3 x m a d x M
rather than 2 x A4 x M, the space allocation of the purely iterative version.

In the final code which is generated, there are several alternatives in how the transformed array
is treated. We can flag arrays which have undergone this transformation, and replace each reference
to A'[K', I', J'] by A[I', J', K' - 21' - J']. Alternatively, we could redefined A as a function which
retrieves the proper entry from A'. With a little more intelligence, we could rotate the input array
into A'[l], work entirely with the transformed array A' in the recurrence, and unrotate back into
the return parameter. The latter approach is preferable because a regular pattern of array reference
is established for the iteration which can be optimized (with respect to stride length) in procedural
multiprocessor compilers.

5 Conclusion

We have presented a nonprocedural dataflow language and shown how the compiler for the language
creates the flowchart of a procedural loop program with iterative and f o r d loops. We have shown
how opportunities for storage reuse are detected by the scheduler, and that subscript transformation
may be performed so that 1) an apparently iterative formulation can be transformed hito a parallel
one from which a parallel loop can be generated, and 2) storage reuse can be applied to the
transformed array.

Implementation effort is focussed on the following topics:

0 Integration of the array subscript restructuring algorithm into the compiler.

0 a graphical front end, which can translate Equation 1 or Equation 2 into PS.

0 Improvement of the scheduler to better merge iterative loops.

16

Acknowledgements Many thanks to those who have participated in the design and implementation
of PS: Thomas J. Myers, Sue Smet , Eric Su, Todd Torgersen, Yuh-Dong Tsai, Ed Wyatt.

6 Bibliography

[l] Allen, J., “Dependence Analysis for Subscripted Variables and its Application to Program

[2] Ashcroft, E. and Wadge, W., ‘Lucid, A Nonprocedural Language with Iteration,” Communi-

[3] Banerjee, et. al. Time and parallel processing bounds for Fortran-like loops,” IEEE Bans. on

lkansformations,” Ph.D dissertation, Rice University, 1983.

cations of the ACM, July 1977.

Computers, Sept. 1979.

[4] Cytron, R., ‘Doacross: Beyond Vectorization for Multiprocessors,” International Conference
on Parallel Processing 1986, pp. 836-844.

151 Gokhale, M., “Generating Parallel Programs from Nonprocedural Specifications,” 4th Jerusalem
Conference on Information Technology 1984.

[6] Gokhale, M., “Algorith Specification in a Very High Level Language,” Institute for Computer
Applications in Science and Engineering Report 8867, 1986.

[7] Jordan, Harry, “The Force on the Flex: Global Parallelism and Portability,” Institute for
Computer Applications in Science and Engineering Report 8654, 1986.

[8] Kuck, D., et. d., ‘Dependence Graphs and Compiler Optimization,” Proc. of 8th Annual
Symposium on Principles of Programming Languages, 198 1.

[9] Kuck, et. al., YAnalysis and transformation of programs for parallel computation,” Proc. of
4th Int’l Computer Software and Applications Conference, IEEE, 1980.

[lo] Lamport, L., “The Parallel Execution of Do Loops,” Communications of the ACM February
1974.

[ll] Lu, K.-S., “MODEL Program Generator: System and Programming Documentation: Tech-
nical Report U. of Pennsylvania, 1982.

[12] McGraw, Jim, YSISAL: Streams and Iteration in a Single Assignment Language,” Lawrence
Livermore National Laboratory &port M-146, &.vision 1, 1985.

[13] Midkitf, S. P., et. al., “Compiler Generated Synchronization for DO Loops: International
Conference on Parallel Processing 1986, pp. 544551.

.

17

[14] Myers, T. and Gokhale, M., “Parallel Scheduling of Recursively Defined Arrays,” Journal of
Symbolic Computation, to appear. Also available as Institute for Computer Applications in
Science and Engineering Report 86-66, 1986.

[15] Pneuli, A. and Prywes, N., “Scheduling Equational Specifications and Nonprocedural Pro-
grams,” Chapter 13 in Automatic Program Construction Techniques, MacMillan 1984.

[IS] Polychronopoulos, C. D., et. al., ‘Execution of Parallel Loops on Parallel Processor Systems,”
International Conference on Parallel Processing 1986, pp. 519-527.

IEEE lkavwaetions on So$ware Engineering, May 1983.
[17] Prywes, N., et. al., acornpilation of Nonprocedural Specscations into Computer Programs,”

[18] Prywes, N. et. al., “Programming Supercomputers in an Equational Language,” First Inter-
national Conference on Supercomputing Systems, 1985.

[19] Shi, Y., Very-High Level Concurrent Programming,” Ph.D dissertation in Computer and
Information Sciences, U. of Pennsylvania, 1984.

Standard Bibliographic Page

ICASE Report No. 87-23
1. Title and Subtitle

,. Report No. NASA CR-178277 12. Government Accession No. 13. Recipient’s Catalog No.

5. Report Date

EXPLOITING LOOP LEVEL PARALLELISM IN NONPROCEDURAL
DATAFLOW PROGRAMS

April 1987
6. Performing Organization Code

8. Performing Organization Report No. r. Author(s)

87-23
10. W-ork Unit No.

Maya B. Gokhale

‘instrrfute Tor eomputer ippeasications in Science b. erfo ing Org izatio Name and ddr

National Aeronautics and Space Administration
Washington, D.C. 20546

and Engineering
Mail Stop 132C, NASA Langley Research Center

Contractor ReDort
14. Sponsoring Agency Code

505-90-21-01

11. Contract or Grant No.
NAS1-18107

19. Security Classif.(of this report) 20. Security Classif.(of this page) 21. No. of Pages
Unclassified Unclassified 19

13. Type of Report and Period Covered
Hampton, VA 23665-5225

L2. Sponsoring Agency Name and Address

22. Price
A0 2

In this paper, we discuss how loop level parallelism is detected in a
nonprocedural dataflow program and how a procedural program with concurrent
loops is scheduled. In addition, we discuss a program restructuring technique
which may be applied to recursive equations so that concurrent loops may be
generated for a seemingly iterative computation. A compiler which generates
C code for the language described below has been implemented. We describe the
scheduling component of the compiler and the restructuring transformation.

17. Key Words (Suggested by Authora(s))

parallel scheduling, dataflow,
automatic program generation, program
transformation, hyperplane

18. Distribution Statement

62 - Computer Systems

NASA Langley Form 63 (June 1985)

